On the objectivity, reliability, and validity of deep learning enabled bioimage analyses

论深度学习生物图像分析的客观性、可靠性和有效性

阅读:7
作者:Dennis Segebarth #, Matthias Griebel #, Nikolai Stein, Cora R von Collenberg, Corinna Martin, Dominik Fiedler, Lucas B Comeras, Anupam Sah, Victoria Schoeffler, Teresa Lüffe, Alexander Dürr, Rohini Gupta, Manju Sasi, Christina Lillesaar, Maren D Lange, Ramon O Tasan, Nicolas Singewald, Hans-Christia

Abstract

Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。