Background
MiR-133a has been confirmed to be involved in the development of multiple cancers including non-small cell lung cancer (NSCLC). However, the precise molecular mechanism has not yet been fully elucidated. The
Conclusions
In conclusion, miR-133a acted as a tumor suppressor in lung cancer progression by regulating the LASP1 and TGF-β/Smad3 signaling pathway.
Methods
Quantitative real-time PCR (qRT-PCR) was performed to measure miR-133a and LASP1 expression in NSCLC tissues and cells. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to detect cell viability. The protein levels were measured by western blot. The tumor growth was measured by xenograft tumor formation assay.
Results
miR-133a was significantly decreased while LASP1 was increased in NSCLC tissues and cells compared with control groups. Moreover, overexpression of miR-133a suppressed cell viability, whereas miR-133a knockdown enhanced the viability of A549 cells. More importantly, LASP1 was verified as a direct target of miR-133a. Moreover, overexpression of miR-133a inhibited the epithelial-mesenchymal transition (EMT) and TGF-β/Smad3 pathways by regulating LASP1 in vitro. In addition, miR-133a mimic suppressed tumor growth by modulating the TGF-β/Smad3 pathway in vivo. Conclusions: In
