Articular cartilage endurance and resistance to osteoarthritic changes require transcription factor Erg

关节软骨耐力和对骨关节炎变化的抵抗需要转录因子 Erg

阅读:5
作者:Yoichi Ohta, Takahiro Okabe, Colleen Larmour, Agnese Di Rocco, Marijke W Maijenburg, Amanda Phillips, Nancy A Speck, Shigeyuki Wakitani, Takashi Nakamura, Yoshihiko Yamada, Motomi Enomoto-Iwamoto, Maurizio Pacifici, Masahiro Iwamoto

Conclusion

The study shows for the first time that Erg is a critical molecular regulator of the endurance of articular cartilage during postnatal life and that Erg can mitigate spontaneous and experimental OA. Erg appears to do this through regulating expression of PTHrP and lubricin, factors known for their protective roles in joints.

Methods

Floxed Erg mice were mated with Gdf5-Cre mice to generate conditional mutants lacking Erg in their joints. Joints of mutant and control mice were subjected to morphologic and molecular characterization and also to experimental surgically induced osteoarthritis (OA). Gene expression, promoter reporter assays, and gain- and loss-of-function in vitro tests were used to characterize molecular mechanisms of Erg action.

Objective

To determine whether and how the transcription factor Erg participates in the genesis, establishment, and maintenance of articular cartilage.

Results

Conditional Erg ablation did not elicit obvious changes in limb joint development and overall phenotype in juvenile mice. However, as mice aged, joints of mutant mice degenerated spontaneously and exhibited clear OA-like phenotypic defects. Joints in juvenile mutant mice were more sensitive to surgically induced OA and became defective sooner than operated joints in control mice. Global gene expression data and other studies identified parathyroid hormone-related protein (PTHrP) and lubricin as possible downstream effectors and mediators of Erg action in articular chondrocytes. Reporter assays using control and mutated promoter-enhancer constructs indicated that Erg acted on Ets DNA binding sites to stimulate PTHrP expression. Erg was up-regulated in severely affected areas in human OA articular cartilage but remained barely appreciable in areas of less affected cartilage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。