C3aR-initiated signaling is a critical mechanism of podocyte injury in membranous nephropathy

C3aR启动的信号传导是膜性肾病中足细胞损伤的关键机制。

阅读:1
作者:Qi Zhang ,Sofia Bin ,Kelly Budge ,Astgik Petrosyan ,Valentina Villani ,Paola Aguiari ,Coralien Vink ,Jack Wetzels ,Hasmik Soloyan ,Gaetano La Manna ,Manuel Alfredo Podestà ,Paolo Molinari ,Sargis Sedrakyan ,Kevin V Lemley ,Roger E De Filippo ,Laura Perin ,Paolo Cravedi ,Stefano Da Sacco

Abstract

The deposition of antipodocyte autoantibodies in the glomerular subepithelial space induces primary membranous nephropathy (MN), the leading cause of nephrotic syndrome worldwide. Taking advantage of the glomerulus-on-a-chip system, we modeled human primary MN induced by anti-PLA2R antibodies. Here we show that exposure of primary human podocytes expressing PLA2R to MN serum results in IgG deposition and complement activation on their surface, leading to loss of the chip permselectivity to albumin. C3a receptor (C3aR) antagonists as well as C3AR gene silencing in podocytes reduced oxidative stress induced by MN serum and prevented albumin leakage. In contrast, inhibition of the formation of the membrane-attack-complex (MAC), previously thought to play a major role in MN pathogenesis, did not affect permselectivity to albumin. In addition, treatment with a C3aR antagonist effectively prevented proteinuria in a mouse model of MN, substantiating the chip findings. In conclusion, using a combination of pathophysiologically relevant in vitro and in vivo models, we established that C3a/C3aR signaling plays a critical role in complement-mediated MN pathogenesis, indicating an alternative therapeutic target for MN. Keywords: Chronic kidney disease; Complement; Nephrology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。