PEG-mediated transduction of rAAV as a platform for spatially confined and efficient gene delivery

PEG 介导的 rAAV 转导作为空间受限且高效的基因传递平台

阅读:17
作者:Liang Zou, Jinfen Wang, Ying Fang, Huihui Tian

Background

Recombinant adeno-associated viruses (rAAV) are commonly used vectors for gene delivery in both basic neuroscience and clinical applications due to their nonpathogenic, minimally immunogenic, and sustained expression properties. However, several challenges remain for the wide-scale rAAV applications, including poor infection of many clinically important cell lines, insufficient expression at low titers, and diffusive transduction in vivo.

Conclusions

This spatially confined and efficient transduction method can facilitate the applications of rAAV in fundamental research, especially in the precise dissection of neural circuits, and also improve the capabilities of rAAV in the treatment of neurological diseases which originate from the disorders of small nuclei in the brain.

Methods

In this work, PEG, which is a safe and non-toxic polymer of ethylene oxide monomer, was applied as an auxiliary transduction agent to improve the expression of rAAV. In detail, a small dose of PEG was added into the rAAV solution for the transgene expression in cell lines in vitro, and in the central nervous system (CNS) in vivo. The biocompatibility of PEG enhancer was assessed by characterizing the immune responses, cell morphology, cell tropism of rAAV, neuronal apoptosis, as well as motor function of animals.

Results

The results show that small dose of PEG additive can effectively improve the gene expression characteristics of rAAV both in vitro and in vivo. Specifically, the PEG additive allows efficient transgene expression in cell lines that are difficult to be transfected with rAAV alone. In vivo studies show that the PEG additive can promote a spatially confined and efficient transgene expression of low-titer rAAV in the brain over long terms. In addition, no obvious side effects of PEG were observed on CNS in the biocompatibility studies. Conclusions: This spatially confined and efficient transduction method can facilitate the applications of rAAV in fundamental research, especially in the precise dissection of neural circuits, and also improve the capabilities of rAAV in the treatment of neurological diseases which originate from the disorders of small nuclei in the brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。