Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus A21

浆细胞样树突状细胞协调溶瘤柯萨奇病毒 A21 诱导的先天性和适应性抗肿瘤免疫

阅读:15
作者:Louise M E Müller, Matthew Holmes, Joanne L Michael, Gina B Scott, Emma J West, Karen J Scott, Christopher Parrish, Kathryn Hall, Sina Stäble, Victoria A Jennings, Matthew Cullen, Stewart McConnell, Catherine Langton, Emma L Tidswell, Darren Shafren, Adel Samson, Kevin J Harrington, Hardev Pandha, C

Background

The oncolytic virus, coxsackievirus A21 (CVA21), has shown promise as a single agent in several clinical trials and is now being tested in combination with immune checkpoint blockade. Combination therapies offer the best chance of disease control; however, the design of successful combination strategies requires a deeper understanding of the mechanisms underpinning CVA21 efficacy, in particular, the role of CVA21 anti-tumor immunity. Therefore, this study aimed to examine the ability of CVA21 to induce human anti-tumor immunity, and identify the cellular mechanism responsible.

Conclusion

This work supports the development of CVA21 as an immunotherapeutic agent for the treatment of both AML and MM. Additionally, the data presented provides an important insight into the mechanisms of CVA21-mediated immunotherapy to aid the development of clinical biomarkers to predict response and rationalize future drug combinations.

Methods

This study utilized peripheral blood mononuclear cells from i) healthy donors, ii) Acute Myeloid Leukemia (AML) patients, and iii) patients taking part in the STORM clinical trial, who received intravenous CVA21; patients receiving intravenous CVA21 were consented separately in accordance with local institutional ethics review and approval. Collectively, these blood samples were used to characterize the development of innate and adaptive anti-tumor immune responses following CVA21 treatment.

Results

An Initial characterization of peripheral blood mononuclear cells, collected from cancer patients following intravenous infusion of CVA21, confirmed that CVA21 activated immune effector cells in patients. Next, using hematological disease models which were sensitive (Multiple Myeloma; MM) or resistant (AML) to CVA21-direct oncolysis, we demonstrated that CVA21 stimulated potent anti-tumor immune responses, including: 1) cytokine-mediated bystander killing; 2) enhanced natural killer cell-mediated cellular cytotoxicity; and 3) priming of tumor-specific cytotoxic T lymphocytes, with specificity towards known tumor-associated antigens. Importantly, immune-mediated killing of both MM and AML, despite AML cells being resistant to CVA21-direct oncolysis, was observed. Upon further examination of the cellular mechanisms responsible for CVA21-induced anti-tumor immunity we have identified the importance of type I IFN for NK cell activation, and demonstrated that both ICAM-1 and plasmacytoid dendritic cells were key mediators of this response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。