Knockdown of HIF-1α inhibits the proliferation and migration of outer root sheath cells exposed to hypoxia in vitro: An involvement of Shh pathway

敲低 HIF-1α 抑制体外缺氧条件下外根鞘细胞增殖和迁移:Shh 通路的参与

阅读:15
作者:Haihua Zhang, Weixiao Nan, Xingchao Song, Shiyong Wang, Huazhe Si, Guangyu Li

Aims

Outer root sheath (ORS) is a highly proliferative component of a hair follicle. This study is performed to investigate whether hypoxia-induced elevation of hypoxia-inducible factor (HIF)-1α, a transcriptional activator, contributes to the outgrowth of ORS cells in vitro. Main

Methods

Hair follicles with intact ORS collected from 4-month old male American minks were cultured in normoxic or hypoxic condition (3% oxygen) for 7days. Primary ORS cells isolated from the mink hair follicles were exposed to hypoxia for 12, 24 or 48h, and their proliferation was analyzed with immunofluorescence assay using anti-proliferating cell nuclear antigen (PCNA) antibody. The migratory ability of ORS cells was detected via the transwell chamber. The endogenous HIF-1α was knocked down with its specific siRNA in ORS cells. Key findings: Hypoxic exposure induced an elevation of HIF-1α in ex vivo cultured hair follicles. The mRNA and protein levels of sonic hedgehog (Shh), Shh receptor Patched 1, Smoothened and glioma-associated oncogene homologue 1 were upregulated. In vitro, hypoxia induced an increase in HIF-1α in ORS cells. Further, under hypoxic condition, the number of PCNA-positive cells was increased, and more cells migrated towards high serum media. Hypoxia-enhanced proliferation and migration of ORS cells were suppressed either by HIF-1α siRNA or by pharmacological inhibitors of Shh pathway, cyclopamine and GANT61. The activation of Shh pathway was attenuated in HIF-1α-silenced ORS cells under hypoxic condition. Significance: Our work demonstrates a direct role of activated HIF-1/Shh biological axis in sustaining the development of ORS in vitro.

Significance

Our work demonstrates a direct role of activated HIF-1/Shh biological axis in sustaining the development of ORS in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。