Deletion of IFT20 in early stage T lymphocyte differentiation inhibits the development of collagen-induced arthritis

早期T淋巴细胞分化过程中IFT20的缺失可抑制胶原诱导性关节炎的发展

阅读:12
作者:Xue Yuan, Lee Ann Garrett-Sinha, Debanjan Sarkar, Shuying Yang

Abstract

IFT20 is the smallest member of the intraflagellar transport protein (IFT) complex B. It is involved in cilia formation. Studies of IFT20 have been confined to ciliated cells. Recently, IFT20 was found to be also expressed in non-ciliated T cells and have functions in immune synapse formation and signaling in vitro. However, how IFT20 regulates T-cell development and activation in vivo is still unknown. We deleted the IFT20 gene in early and later stages of T-cell development by crossing IFT20(flox/flox) (IFT20(f/f) ) mice with Lck-Cre and CD4-Cre transgenic mice, and investigated the role of IFT20 in T-cell maturation and in the development of T cell-mediated collagen-induced arthritis (CIA). We found that both Lck-Cre/IFT20(f/f) and CD4-Cre/IFT20(f/f) mice were indistinguishable from their wild-type littermates in body size, as well as in the morphology and weight of the spleen and thymus. However, the number of CD4- and CD8-positive cells was significantly lower in thymus and spleen in Lck-Cre/IFT20(f/f) mice. Meanwhile, the incidence and severity of CIA symptoms were significantly decreased, and inflammation in the paw was significantly inhibited in Lck-Cre/IFT20(f/f) mice compared to Lck-Cre/IFT20(+/+) littermates. Deletion IFT20 in more mature T cells of CD4-Cre/IFT20(f/f) mice had only mild effects on the development of T cells and CIA. The expression of IL-1β, IL-6 and TGF-β1 were significantly downregulated in the paw of Lck-Cre/IFT20(f/f) mice, but just slight decreased in CD4-Cre/IFT20(f/f) mice. These results demonstrate that deletion of IFT20 in the early stage of T-cell development inhibited CIA development through regulating T-cell development and the expression of critical cytokines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。