1,2,3,5-Tetrazines: A General Synthesis, Cycloaddition Scope, and Fundamental Reactivity Patterns

1,2,3,5-四嗪:一般合成、环加成范围和基本反应模式

阅读:6
作者:Zhi-Chen Wu, Dale L Boger

Abstract

Despite the explosion of interest in heterocyclic azadienes, 1,2,3,5-tetrazines remain unexplored. Herein, the first general synthesis of this new class of heterocycles is disclosed. Its use in the preparation of a series of derivatives, and the first study of substituent effects on their cycloaddition reactivity, mode, and regioselectivity provide the foundation for future use. Their reactions with amidine, electron-rich, and strained dienophiles reveal unique fundamental reactivity patterns (4,6-dialkyl-1,2,3,5-tetrazines > 4,6-diaryl-1,2,3,5-tetrazines for amidines but slower with strained dienophiles), an exclusive C4/N1 mode of cycloaddition, and dominant alkyl versus aryl control on regioselectivity. An orthogonal reactivity of 1,2,3,5-tetrazines and the well-known isomeric 1,2,4,5-tetrazines is characterized, and detailed kinetic and mechanistic investigations of the remarkably fast reaction of 1,2,3,5-tetrazines with amidines, especially 4,6-dialkyl-1,2,3,5-tetrazines, established the mechanistic origins underlying the reactivity patterns and key features needed for future applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。