EBIO Does Not Induce Cardiomyogenesis in Human Pluripotent Stem Cells but Modulates Cardiac Subtype Enrichment by Lineage-Selective Survival

EBIO 不会诱导人类多能干细胞的心肌生成,但会通过谱系选择性存活来调节心脏亚型的富集

阅读:3
作者:Monica Jara-Avaca, Henning Kempf, Michael Rückert, Diana Robles-Diaz, Annika Franke, Jeanne de la Roche, Martin Fischer, Daniela Malan, Philipp Sasse, Wladimir Solodenko, Gerald Dräger, Andreas Kirschning, Ulrich Martin, Robert Zweigerdt

Abstract

Subtype-specific human cardiomyocytes (CMs) are valuable for basic and applied research. Induction of cardiomyogenesis and enrichment of nodal-like CMs was described for mouse pluripotent stem cells (mPSCs) in response to 1-ethyl-2-benzimidazolinone (EBIO), a chemical modulator of small-/intermediate-conductance Ca2+-activated potassium channels (SKs 1-4). Investigating EBIO in human pluripotent stem cells (PSCs), we have applied three independent differentiation protocols of low to high cardiomyogenic efficiency. Equivalent to mPSCs, timed EBIO supplementation during hPSC differentiation resulted in dose-dependent enrichment of up to 80% CMs, including an increase in nodal- and atrial-like phenotypes. However, our study revealed extensive EBIO-triggered cell loss favoring cardiac progenitor preservation and, subsequently, CMs with shortened action potentials. Proliferative cells were generally more sensitive to EBIO, presumably via an SK-independent mechanism. Together, EBIO did not promote cardiogenic differentiation of PSCs, opposing previous findings, but triggered lineage-selective survival at a cardiac progenitor stage, which we propose as a pharmacological strategy to modulate CM subtype composition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。