The P-selectin and PSGL-1 axis accelerates atherosclerosis via activation of dendritic cells by the TLR4 signaling pathway

P-选择素和PSGL-1轴通过TLR4信号通路激活树突状细胞,从而加速动脉粥样硬化。

阅读:1
作者:Zhishuai Ye ,Lei Zhong ,Shengnan Zhu ,Yinuo Wang ,Jie Zheng ,Shujing Wang ,Jianing Zhang ,Rongchong Huang

Abstract

P-selectin and dendritic cells (DCs) are associated with atherosclerosis. However, their interactions in this setting are undefined. Herein, we investigated the role of P-selectin and its receptor P-selectin glycoprotein ligand (PSGL)-1 on atherosclerosis via activation of DCs. In the current study, a total of 34 patients with ST elevation myocardial infarction (STEMI) and 34 healthy control subjects were enrolled. Serum concentration of P-selectin was higher and the myeloid DC/plasmacytoid DC (mDC/pDC) ratio was lower in STEMI patients than in normal individuals. Interestingly, in STEMI patients, P-selectin was decreased and the mDC/pDC ratio was increased at 5-7 days after successful percutaneous coronary intervention, as compared with values on admission. Serum P-selectin was inversely correlated with the mDC/pDC ratio. Moreover, ApoE-/-P-/- and ApoE-/-PSGL-1-/- mice developed small atherosclerotic plaques after feeding of a western diet for 12 weeks and DC infiltration was significantly reduced. P-selectin stimulation markedly induced phenotypic maturation, enhanced secretion of inflammatory cytokines, communication with T cells, and the adhesion and migration of DCs. In vivo, DC maturation was significantly attenuated in P-selectin and PSGL1 knockout mice under hypercholesterolemic and inflammatory conditions. These effects were associated with the activation of myeloid differentiation primary response 88 (MYD88)-dependent and MyD88-independent Toll-like receptor 4 (TLR4) signaling pathways. Taken together, binding of P-selectin to PSGL-1 on DCs contributes to atherosclerosis progression via DC activation via the TLR4 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。