Electrophysiologic and Morphologic Strain Differences in a Low-Dose NaIO3-Induced Retinal Pigment Epithelium Damage Model

低剂量NaIO3诱导的视网膜色素上皮损伤模型中电生理和形态学应变差异

阅读:1
作者:Nan Zhang ,Xian Zhang ,Preston E Girardot ,Micah A Chrenek ,Jana T Sellers ,Ying Li ,Yong-Kyu Kim ,Vivian R Summers ,Salma Ferdous ,Debresha A Shelton ,Jeffrey H Boatright ,John M Nickerson

Abstract

Purpose: We aimed to explore differences in the NaIO3-elicited responses of retinal pigment epithelium (RPE) and other retinal cells associated with mouse strains and dosing regimens. Methods: One dose of NaIO3 at 10 or 15 mg/kg was given intravenously to adult male C57BL/6J and 129/SV-E mice. Control animals were injected with PBS. Morphologic and functional changes were characterized by spectral domain optical coherence tomography, electroretinography, histologic, and immunofluorescence techniques. Results: Injection with 10 mg/kg of NaIO3 did not cause consistent RPE or retinal changes in either strain. Administration of 15 mg/kg of NaIO3 initially induced a large transient increase in scotopic electroretinography a-, b-, and c-wave amplitudes within 12 hours of injection, followed by progressive structural and functional degradation at 3 days after injection in C57BL/6J mice and at 1 week after injection in 129/SV-E mice. RPE cell loss occurred in a large posterior-central lesion with a ring-like transition zone of abnormally shaped cells starting 12 hours after NaIO3 treatment. Conclusions: NaIO3 effects depended on the timing, dosage, and mouse strain. The RPE in the periphery was spared from damage compared with the central RPE. The large transient increase in the electroretinography was remarkable. Translational relevance: This study is a phase T1 translational research study focusing on the development and validation of a mouse model of RPE damage. It provides a detailed foundation for future research, informing choices of mouse strain, dosage, and time points to establish NaIO3-induced RPE damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。