A Chromodomain-Helicase-DNA-Binding Factor Functions in Chromatin Modification and Gene Regulation

Chromodomain-解旋酶-DNA结合因子在染色质修饰和基因调控中发挥作用

阅读:8
作者:Yue Lu, Feng Tan, Yu Zhao, Shaoli Zhou, Xiangsong Chen, Yongfeng Hu, Dao-Xiu Zhou

Abstract

Proteins in the Chromodomain-Helicase/ATPase-DNA-binding domain (CHD) family are divided into three groups. The function of group I CHD proteins in nucleosome positioning is well established, while that of group II members (represented by CHD3/Mi2) remains unclear. Using high-throughput approaches, we investigated the function of the group II rice (Oryza sativa) CHD protein CHR729 in nucleosome positioning, gene expression, histone methylation, and binding. Our data revealed that the chr729 mutation led to increased nucleosome occupancy in the rice genome and altered the expression and histone H3K4me3 modification of many, mainly underexpressed, genes. Further analysis showed that the mutation affected both the deposition and depletion of H3K4me3 in distinct chromatin regions, with concomitant changes in H3K27me3 modification. Genetic and genomic analyses revealed that CHR729 and JMJ703, an H3K4 demethylase, had agonistic, antagonistic, and independent functions in modulating H3K4me3 and the expression of subsets of genes. In addition, CHR729 binding was enriched in H3K4me3-marked genic and H3K27me3-marked intergenic regions. The results indicate that CHR729 has distinct functions in regulating H3K4me3 and H3K27me3 modifications and gene expression at different chromatin domains and provide insight into chromatin regulation of bivalent genes marked by both H3K4me3 and H3K27me3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。