Direct activation of mTOR in B lymphocytes confers impairment in B-cell maturation andloss of marginal zone B cells

淋巴细胞中 mTOR 的直接激活导致 B 细胞成熟受损和边缘区 B 细胞丢失

阅读:4
作者:Sandrine Benhamron, Boaz Tirosh

Abstract

The tuberous sclerosis complex (TSC), composed of TSC1/TSC2 heterodimers, is inhibitory to the mammalian target of rapamycin (mTOR). Deletion of either TSC1 or TSC2 renders mTOR constitutively active. To directly explore the impact of mTOR activation on B-cell development, we conditionally deleted TSC1 in murine B cells. This led to impairment in B-cell maturation. Unexpectedly, and in contrast to Akt activation, marginal zone (MZ) B cells were significantly reduced. Administration of rapamycin partially corrected the MZ defect, indicating a direct role for mTOR in controlling MZ development. When challenged with a T-cell-dependent antigen, TSC1 KO mice responded less efficiently. Consistent with the MZ defects, TSC1 KO mice did not respond at all to T-independent antigens. Because activation of Akt upstream of TSC and mTOR yields the reverse phenotype with respect to MZ development, we conclude that, physiologically, Akt simultaneously emits two opposing signals that counterbalance each other in the control of B-cell differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。