A-kinase anchoring protein 150 expression in a specific subset of TRPV1- and CaV 1.2-positive nociceptive rat dorsal root ganglion neurons

A-激酶锚定蛋白 150 在 TRPV1 和 CaV 1.2 阳性大鼠痛觉背根神经节神经元特定亚群中的表达

阅读:4
作者:Katherine E Brandao, Mark L Dell'Acqua, S Rock Levinson

Abstract

Modulation of phosphorylation states of ion channels is a critical step in the development of hyperalgesia during inflammation. Modulatory enhancement of channel activity may increase neuronal excitability and affect downstream targets such as gene transcription. The specificity required for such regulation of ion channels quickly occurs via targeting of protein kinases and phosphatases by the scaffolding A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 has been implicated in inflammatory pain by targeting protein kinase A (PKA) and protein kinase C (PKC) to the transient receptor potential vanilloid 1 (TRPV1) channel in peripheral sensory neurons, thus lowering threshold for activation of the channel by multiple inflammatory reagents. However, the expression pattern of AKAP150 in peripheral sensory neurons is unknown. Here we identify the peripheral neuron subtypes that express AKAP150, the subcellular distribution of AKAP150, and the potential target ion channels in rat dorsal root ganglion (DRG) slices. We found that AKAP150 is expressed predominantly in a subset of small DRG sensory neurons, where it is localized at the plasma membrane of the soma, axon initial segment, and small fibers. Most of these neurons are peripherin positive and produce C fibers, although a small portion produce Aδ fibers. Furthermore, we demonstrate that AKAP79/150 colocalizes with TRPV1 and Ca(V) 1.2 in the soma and axon initial segment. Thus AKAP150 is expressed in small, nociceptive DRG neurons, where it is targeted to membrane regions and where it may play a role in the modulation of ion channel phosphorylation states required for hyperalgesia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。