Primer-free FISH probes from metagenomics/metatranscriptomics data permit the study of uncharacterised taxa in complex microbial communities

来自宏基因组学/宏转录组学数据的无引物 FISH 探针可用于研究复杂微生物群落中未知的分类群

阅读:7
作者:Shi Ming Tan, Pui Yi Maria Yung, Paul E Hutchinson, Chao Xie, Guo Hui Teo, Muhammad Hafiz Ismail, Daniela I Drautz-Moses, Peter F R Little, Rohan B H Williams, Yehuda Cohen

Abstract

Methods for the study of member species in complex microbial communities remain a high priority, particularly for rare and/or novel member species that might play an important ecological role. Specifically, methods that link genomic information of member species with its spatial structure are lacking. This study adopts an integrative workflow that permits the characterisation of previously unclassified bacterial taxa from microbiomes through: (1) imaging of the spatial structure; (2) taxonomic classification and (3) genome recovery. Our study attempts to bridge the gaps between metagenomics/metatranscriptomics and high-resolution biomass imaging methods by developing new fluorescence in situ hybridisation (FISH) probes-termed as R-Probes-from shotgun reads that harbour hypervariable regions of the 16S rRNA gene. The sample-centric design of R-Probes means that probes can directly hybridise to OTUs as detected in shotgun sequencing surveys. The primer-free probe design captures larger microbial diversity as compared to canonical probes. R-Probes were designed from deep-sequenced RNA-Seq datasets for both FISH imaging and FISH-Fluorescence activated cell sorting (FISH-FACS). FISH-FACS was used for target enrichment of previously unclassified bacterial taxa prior to downstream multiple displacement amplification (MDA), genomic sequencing and genome recovery. After validation of the workflow on an axenic isolate of Thauera species, the techniques were applied to investigate two previously uncharacterised taxa from a tropical full-scale activated sludge community. In some instances, probe design on the hypervariable region allowed differentiation to the species level. Collectively, the workflow can be readily applied to microbiomes for which shotgun nucleic acid survey data is available.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。