Foam fractionation of a recombinant biosurfactant apolipoprotein

重组生物表面活性剂载脂蛋白的泡沫分离

阅读:2
作者:Kyle Lethcoe, Colin A Fox, Robert O Ryan

Abstract

Locusta migratoria apolipophorin III (apoLp-III) possesses the ability to exist as a water soluble amphipathic α-helix bundle and a lipid surface seeking apolipoprotein. The intrinsic ability of apoLp-III to transform phospholipid vesicles into reconstituted discoidal high-density lipoproteins (rHDL) has led to myriad applications. To improve the yield of recombinant apoLp-III, studies were performed in a bioreactor. Induction of apoLp-III expression generated a protein product that is secreted from E. coli into the culture medium. Interaction of apoLp-III with gas and liquid components in media produced large quantities of thick foam. A continuous foam fractionation process yielded a foamate containing apoLp-III as the sole major protein component. The yield of recombinant apoLp-III was ~0.2 g / liter bacterial culture. Mass spectrometry analysis verified the identity of the target protein and indicated no modifications or changes to apoLp-III occurred as a result of foam fractionation. The functional ability of apoLp-III to induce rHDL formation was evaluated by incubating foam fractionated apoLp-III with phosphatidylcholine vesicles. FPLC size exclusion chromatography revealed a single major population of particles in the size range of rHDL. The results described offer a novel approach to bioreactor-based apoLp-III production that takes advantage of its intrinsic biosurfactant properties.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。