Endoplasmic reticulum stress increases LECT2 expression via ATF4

内质网应激通过 ATF4 增加 LECT2 表达

阅读:7
作者:Chan Yoon Park, Seul Ki Lee, Jimin Kim, Donguk Kim, Han Choe, Ji-Hoon Jeong, Kyung-Chul Choi, Hye Soon Park, Sung Nim Han, Yeon Jin Jang

Abstract

Non-alcoholic fatty liver disease (NAFLD) is frequently associated with obesity, insulin resistance, and endoplasmic reticulum (ER) stress. Elevated circulating levels of the hepatokine leukocyte cell-derived chemotaxin-2 (LECT2) have also been noted in NAFLD; however, the mechanism underlying this association is unclear. To investigate a possible link between ER stress/unfolded protein response (UPR) signaling and LECT2 secretion, HepG2 cells were incubated with ER stress inducers with or without an ER stress-reducing chemical chaperone. Additionally, UPR pathway genes were knocked down and overexpressed, and a ChIP assay was performed. In diet-induced obese mice, hepatic expression of LECT2 and activating transcription factor 4 (ATF4) was measured. In HepG2 cells, LECT2 expression was increased by ER stressors, an effect blocked by the chemical chaperone. Among UPR pathway proteins, only knockdown of ATF4 suppressed ER stress-induced LECT2 expression, while overexpression of ATF4 enhanced LECT2 expression. The ChIP assay revealed that ATF4 binds to three putative binding sites on the LECT2 promoter and binding is promoted by an ER stress inducer. In steatotic livers of obese mice, LECT2 and ATF4 expression was concomitantly elevated. Our data indicate that activation of ER stress/UPR signaling induces LECT2 expression in steatotic liver; specifically, ATF4 appears to mediate upregulation of LECT2 transcription.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。