Aberrant GPA expression and regulatory function of red blood cells in sickle cell disease

镰状细胞病中红细胞的异常 GPA 表达和调节功能

阅读:6
作者:Juliana N Marshall, Matthew N Klein, Pratap Karki, Kamoltip Promnares, Saini Setua, Xiaoxuan Fan, Paul W Buehler, Konstantin G Birukov, Gerardo R Vasta, Magali J Fontaine

Abstract

Glycophorin A (GPA), a red blood cell (RBC) surface glycoprotein, can maintain peripheral blood leukocyte quiescence through interaction with a sialic acid-binding Ig-like lectin (Siglec-9). Under inflammatory conditions such as sickle cell disease (SCD), the GPA of RBCs undergo structural changes that affect this interaction. Peripheral blood samples from patients with SCD before and after RBC transfusions were probed for neutrophil and monocyte activation markers and analyzed by fluorescence-activated cell sorting (FACS). RBCs were purified and tested by FACS for Siglec-9 binding and GPA expression, and incubated with cultured endothelial cells to evaluate their effect on barrier function. Activated leukocytes from healthy subjects (HS) were coincubated with healthy RBCs (RBCH), GPA-altered RBCs, or GPA-overexpressing (OE) cells and analyzed using FACS. Monocyte CD63 and neutrophil CD66b from patients with SCD at baseline were increased 47% and 27%, respectively, as compared with HS (P = .0017, P = .0162). After transfusion, these markers were suppressed by 22% and 17% (P = .0084, P = .0633). GPA expression in RBCSCD was 38% higher (P = .0291) with decreased Siglec-9 binding compared with RBCH (0.0266). Monocyte CD63 and neutrophil CD66b were suppressed after incubation with RBCH and GPA-OE cells, but not with GPA-altered RBCs. Endothelial barrier dysfunction after lipopolysaccharide challenge was restored fully with exposure to RBCH, but not with RBCSCD, from patients in pain crisis, or with RBCH with altered GPA. Pretransfusion RBCSCD do not effectively maintain the quiescence of leukocytes and endothelium, but quiescence is restored through RBC transfusion, likely by reestablished GPA-Siglec-9 interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。