The long noncoding RNA PDK1-AS/miR-125b-5p/VEGFA axis modulates human dermal microvascular endothelial cell and human umbilical vein endothelial cell angiogenesis after thermal injury

长链非编码RNA PDK1-AS/miR-125b-5p/VEGFA轴调控热损伤后人真皮微血管内皮细胞和人脐静脉内皮细胞的血管生成

阅读:7
作者:Situo Zhou, Pengfei Liang, Pihong Zhang, Minghua Zhang, Xiaoyuan Huang

Abstract

Our previous study confirmed the critical role of miR-125b and vascular endothelial growth factor (VEGF) in burn wound repair., The present study was aimed to identify the role of long noncoding RNAs (lncRNAs) related to the function of miR-125b and VEGF in burn wound repair and the underlying mechanism. First, we found that lncRNA PDK1-AS and VEGFA expression was significantly increased in heat-denatured dermal tissue samples and in human dermal microvascular endothelial cells (HDMECs) and human umbilical vein endothelial cells (HUVECs) after thermal injury. PDK1-AS knockdown significantly inhibited cell viability, cumulative tube length, cell migratory ability, and cell invasion of thermally injured HDMECs and HUVECs. PDK1-AS knockdown decreased VEGFA protein levels in HDMECs and HUVECs. While overexpression of PDK1-AS showed the opposite effects. Online tools prediction and luciferase assay confirmed that miR-125b-5p targeted PDK1-AS and VEGFA 3'-untranslated region. miR-125b-5p inhibition significantly increased VEGFA protein levels and enhanced viability, cumulative tube length, migratory ability, and invasion of HUVECs and HDMECs. Furthermore, the effects of PDK1-AS knockdown on VEGFA protein levels in the two cell lines were partially reversed by miR-125b-5p inhibition. Finally, in the tissue samples, PDK1-AS and VEGFA expression was increased, while miR-125b-5p expression was decreased in heat-denatured dermal tissues; the expression of miR-125b-5p had a negative correlation with PDK1-AS and VEGFA, respectively, and PDK1-AS and VEGFA were positively correlated with each other in tissue samples. In conclusion, PDK1-AS relieves miR-125b-5p-induced inhibition on VEGFA by acting as a endogenous RNA, therefore modulating HDMEC and HUVEC angiogenesis after thermal injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。