Expression of each cistron in the gal operon can be regulated by transcription termination and generation of a galk-specific mRNA, mK2

gal 操纵子中每个顺反子的表达可以通过转录终止和 galk 特异性 mRNA mK2 的产生来调节

阅读:13
作者:Xun Wang, Sang Chun Ji, Sang Hoon Yun, Heung Jin Jeon, Si Wouk Kim, Heon M Lim

Abstract

The gal operon of Escherichia coli has 4 cistrons, galE, galT, galK, and galM. In our previous report (H. J. Lee, H. J. Jeon, S. C. Ji, S. H. Yun, H. M. Lim, J. Mol. Biol. 378: 318-327, 2008), we identified 6 different mRNA species, mE1, mE2, mT1, mK1, mK2, and mM1, in the gal operon and mapped these mRNAs. The mRNA map suggests a gradient of gene expression known as natural polarity. In this study, we investigated how the mRNAs are generated to understand the cause of natural polarity. Results indicated that mE1, mT1, mK1, and mM1, whose 3' ends are located at the end of each cistron, are generated by transcription termination. Since each transcription termination is operating with a certain frequency and those 4 mRNAs have 5' ends at the transcription initiation site(s), these transcription terminations are the basic cause of natural polarity. Transcription terminations at galE-galT and galT-galK junctions, making mE1 and mT1, are Rho dependent. However, the terminations to make mK1 and mM1 are partially Rho dependent. The 5' ends of mK2 are generated by an endonucleolytic cleavage of a pre-mK2 by RNase P, and the 3' ends are generated by Rho termination 260 nucleotides before the end of the operon. The 5' portion of pre-mK2 is likely to become mE2. These results also suggested that galK expression could be regulated through mK2 production independent from natural polarity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。