Human 5' UTR design and variant effect prediction from a massively parallel translation assay

通过大规模平行翻译试验进行人类 5' UTR 设计及变异效应预测

阅读:9
作者:Paul J Sample #, Ban Wang #, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, Georg Seelig

Abstract

The ability to predict the impact of cis-regulatory sequences on gene expression would facilitate discovery in fundamental and applied biology. Here we combine polysome profiling of a library of 280,000 randomized 5' untranslated regions (UTRs) with deep learning to build a predictive model that relates human 5' UTR sequence to translation. Together with a genetic algorithm, we use the model to engineer new 5' UTRs that accurately direct specified levels of ribosome loading, providing the ability to tune sequences for optimal protein expression. We show that the same approach can be extended to chemically modified RNA, an important feature for applications in mRNA therapeutics and synthetic biology. We test 35,212 truncated human 5' UTRs and 3,577 naturally occurring variants and show that the model predicts ribosome loading of these sequences. Finally, we provide evidence of 45 single-nucleotide variants (SNVs) associated with human diseases that substantially change ribosome loading and thus may represent a molecular basis for disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。