Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway

索拉非尼通过 HIF-1α/SLC7A11 通路引发肝星状细胞铁死亡,从而减轻肝纤维化

阅读:5
作者:Siyu Yuan, Can Wei, Guofang Liu, Lijun Zhang, Jiahao Li, Lingling Li, Shiyi Cai, Ling Fang

Conclusions

Sorafenib triggers HSC ferroptosis via HIF-1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.

Methods

The effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4 . In vitro, Fer-1 and DFO were used to block ferroptosis and then explored the anti-fibrotic effect of sorafenib by detecting α-SMA, COL1α1 and fibronectin proteins. Finally, HIF-1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway.

Results

Sorafenib attenuated liver injury and ECM accumulation in CCl4 -induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib-treated HSC-T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib-elicited HSC ferroptosis and ECM reduction were abrogated by Fer-1 and DFO. Additionally, both HIF-1α and SLC7A11 proteins were reduced in sorafenib-treated HSC-T6 cells. SLC7A11 was positively regulated by HIF-1α, inactivation of HIF-1α/SLC7A11 pathway was required for sorafenib-induced HSC ferroptosis, and elevation of HIF-1α could inhibit ferroptosis, ultimately limited the anti-fibrotic effect. Conclusions: Sorafenib triggers HSC ferroptosis via HIF-1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。