Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology

用于操纵细胞微环境的刺激响应水凝胶:从化学到生物制造技术

阅读:6
作者:Mohamed Alaa Mohamed, Afsoon Fallahi, Ahmed M A El-Sokkary, Sahar Salehi, Magda A Akl, Amin Jafari, Ali Tamayol, Hicham Fenniri, Ali Khademhosseini, Stelios T Andreadis, Chong Cheng

Abstract

Native tissues orchestrate their functions by complex interdependent cascades of biochemical and biophysical cues that vary spatially and temporally during cellular processes. Scaffolds with well-tuned structural, mechanical, and biochemical properties have been developed to guide cell behavior and provide insight on cell-matrix interaction. However, static scaffolds very often fail to mimic the dynamicity of native extracellular matrices. Stimuli-responsive scaffolds have emerged as powerful platforms that capture vital features of native tissues owing to their ability to change chemical and physical properties in response to cytocompatible stimuli, thus enabling on-demand manipulation of cell microenvironment. The vast expansion in biorthogonal chemistries and stimuli-responsive functionalities has fuelled further the development of new smart scaffolds that can permit multiple irreversible or reversible spatiotemporal modulation of cell-directing cues, thereby prompting in-depth studies to interpret the decisive elements that regulate cell behavior. Integration of stimuli-responsive hydrogels with current biofabrication technologies has allowed the development of dynamic scaffolds with organizational features and hierarchical architectures similar to native tissues. This review highlights the progress achieved using stimuli-responsive hydrogels in fundamental cell biology studies, with particular emphasis on the interplay between chemistry, biomaterials design, and biofabrication technologies for manipulation of cell microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。