SOX4 regulates invasion of bladder cancer cells via repression of WNT5a

SOX4 通过抑制 WNT5a 来调节膀胱癌细胞的侵袭

阅读:4
作者:Josue D Moran, Hannah H Kim, Zhenghong Li, Carlos S Moreno

Abstract

Sry‑Related HMG‑BOX‑4 (SOX4) is a developmental transcription factor that is overexpressed in as many as 23% of bladder cancer patients; however, the role of SOX4 in bladder cancer tumorigenesis is not yet well understood. Given the many roles of SOX4 in embryonic development and the context‑dependent regulation of gene expression, in this study, we sought to determine the role of SOX4 in bladder cancer and to identify SOX4‑regulated genes that may contribute to tumorigenesis. For this purpose, we employed a CRISPR interference (CRISPRi) method to transcriptionally repress SOX4 expression in T24 bladder cancer cell lines, 'rescued' these cell lines with the lentiviral‑mediated expression of SOX4, and performed whole genome expression profiling. The cells in which SOX4 was knocked down (T24‑SOX4‑KD) exhibited decreased invasive capabilities, but no changes in migration or proliferation, whereas rescue experiments with SOX4 lentiviral vector restored the invasive phenotype. Gene expression profiling revealed 173 high confidence SOX4‑regulated genes, including WNT5a as a potential target of repression by SOX4. Treatment of the T24‑SOX4‑KD cells with a WNT5a antagonist restored the invasive phenotype observed in the T24‑scramble control cells and the SOX4 lentiviral‑rescued cells. High WNT5a expression was associated with a decreased invasion and WNT5a expression inversely correlated with SOX4 expression, suggesting that SOX4 can negatively regulate WNT5a levels either directly or indirectly and that WNT5a likely plays a protective role against invasion in bladder cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。