Enhancing Functionality of Epoxy-TiO2-Embedded High-Strength Lightweight Aggregates

增强环氧树脂-TiO2 嵌入高强度轻质骨料的功能

阅读:5
作者:Taekyung Lim, Jeong Hui Lee, Ju-Hyun Mun, Keun-Hyeok Yang, Sanghyun Ju, Sang-Mi Jeong

Abstract

With the increasing trend of high-rise, large-scale, and functional modern architectural structures, lightweight aggregate (LWA) concrete that exhibits excellent strength and high functionality has garnered active research attention. In particular, as the properties of concrete vary considerably with the raw materials and the proportions of aggregates in the mix, in-depth research on weight reduction, strength improvement, and functional enhancements of aggregates is crucial. This study used the negative pressure coating of a mixed solution comprising epoxy (mixture of epoxy resin and crosslinker), hyper-crosslinked polymer, and titanium oxide (TiO2) nanoparticles on the LWA, and achieved an improvement in the strength of the LWA as well as a reduction in air pollutants such as NOx and SOx. Compared to a normal LWA with an aggregate impact value (AIV) of 38.7%, the AIV of the proposed epoxy-TiO2-embedded high-strength functional LWA was reduced by approximately half to 21.1%. In addition, the reduction rates of NOx and SOx gases resulting from the photocatalytic properties of TiO2 nanoparticles coated with epoxy were approximately 90.9% and 92.8%, respectively. Epoxy-TiO2, embedded in LWAs through a mixture, exhibited stability, high strength, and a reduction in air pollutant characteristics, despite repeated water washing. The LWA proposed herein offers excellent structural and functional properties and is expected to be used in functional lightweight concrete that can be practically applied in high-rise and large-scale architectural structures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。