Physicochemical properties, anticancer and antimicrobial activities of metallic nanoparticles green synthesized by Aspergillus kambarensis

坎巴曲霉合成的金属纳米粒子绿的物理化学性质、抗癌和抗菌活性

阅读:9
作者:Mohammadhassan Gholami-Shabani, Fattah Sotoodehnejadnematalahi, Masoomeh Shams-Ghahfarokhi, Ali Eslamifar, Mehdi Razzaghi-Abyaneh

Abstract

In the present study, metal and metal oxide nanoparticles were successfully synthesized using Aspergillus kambarensis. UV-Vis spectroscopy showed maximum absorbance of 417 nm for silver (AgNPs), 542 nm for gold (AuNPs), 582 nm for copper (CuNPs) and 367 nm for zinc oxide (ZnONPs) nanoparticles. Fourier transform infrared spectroscopy indicated the presence of various mycochemicals with diverse functional groups in the fungal cell-free filtrate. Transmission electron microscopy revealed mono and poly dispersed particles with an estimate size of 50 nm and different shapes for synthesized manufacture metallic nanoparticles (MNPs. Dynamic light scattering confirmed that MNPs were dispersed in the size range less than 50 nm. Zeta potential analysis showed values of -41.32 mV (AgNPs), -41.26 mV (AuNPs), -34.74 mV (CuNPs) and 33.72 mV (ZnONPs). X-ray diffraction analysis demonstrated crystalline nature for MNPs. All the synthesized MNPs except AuNPs showed strong antifungal and antibacterial activity in disc diffusion assay with growth inhibition zones of 13.1-44.2 mm as well as anticancer activity against HepG-2 cancer cell line with IC50 in the range of 62.01-77.03 µg/ml. Taken together, the results show that biologically active MNPs synthesized by A. kambarensis for the first time could be considered as promising antimicrobial and anticancer agents for biomedical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。