Severe alterations of cerebellar cortical development after constitutive activation of Wnt signaling in granule neuron precursors

颗粒神经元前体中 Wnt 信号的组成性激活后小脑皮质发育发生严重改变

阅读:9
作者:Andreas Lorenz, Markus Deutschmann, Julia Ahlfeld, Catharina Prix, Arend Koch, Ron Smits, Riccardo Fodde, Hans A Kretzschmar, Ulrich Schüller

Abstract

The Wnt/β-catenin signaling pathway plays crucial roles in early hindbrain formation, and its constitutive activity is associated with a subset of human medulloblastoma, a malignant childhood tumor of the posterior fossa. However, the precise function of Wnt/β-catenin signaling during cerebellar development is still elusive. We generated Math1-cre::Apc(Fl/Fl) mice with a conditional knockout for the Adenomatosis polyposis coli (Apc) gene that displayed a constitutive activity of Wnt/β-catenin signaling in cerebellar granule neuron precursors. Such mice showed normal survival without any tumor formation but had a significantly smaller cerebellum with a complete disruption of its cortical histoarchitecture. The activation of the Wnt/β-catenin signaling pathway resulted in a severely inhibited proliferation and premature differentiation of cerebellar granule neuron precursors in vitro and in vivo. Mutant mice hardly developed an internal granular layer, and layering of Purkinje neurons was disorganized. Clinically, these mice presented with significantly impaired motor coordination and ataxia. In summary, we conclude that cerebellar granule neurons essentially require appropriate levels of Wnt signaling to balance their proliferation and differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。