Adenosine Triphosphate Accumulated Following Cerebral Ischemia Induces Neutrophil Extracellular Trap Formation

脑缺血后三磷酸腺苷积累诱导中性粒细胞胞外陷阱形成

阅读:8
作者:Seung-Woo Kim, Dashdulam Davaanyam, Song-I Seol, Hye-Kyung Lee, Hahnbie Lee, Ja-Kyeong Lee

Abstract

In ischemic stroke, neutrophils infiltrate damaged brain tissue immediately following the ischemic insult and aggravate inflammation via various mechanisms which include neutrophil extracellular traps (NETs) formation. In the present study, we showed that adenosine triphosphate (ATP), a DAMP molecule, accumulates in the brain and induces NETosis in brain parenchyma and in circulating neutrophils (PMNs) isolated from a murine model of stroke induced by middle cerebral artery occlusion (MCAO). Expression of peptidylarginine deiminase-4 (PAD4), which induces citrullination of histones H3 (CitH3) and initiates NETosis, was significantly enhanced in brain parenchyma and blood PMNs following MCAO. ATP or BzATP (a prototypic P2X7R agonist) significantly enhanced the inductions of PAD4 and CitH3 in a P2X7R-dependent manner and intracellular Ca2+ influx, PKCα activation, and NADPH oxidase-dependent reactive oxygen species (ROS) production play critical roles in this ATP-P2X7R-mediated NETosis. In our MCAO animal model, NETosis was markedly suppressed by treatment with apyrase, an enzyme hydrolyzing ATP, but enhanced by co-treatment of BzATP, confirming ATP-P2X7R-mediated NETosis. Since ATP not only induced NETosis but was also extruded after NETosis, our results indicate that ATP accumulated in the ischemic brain induces NETosis, mediating a cross-talk linking NETosis with neuronal damage that might aggravate inflammation and brain damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。