Therapeutic manipulation of angiogenesis with miR-27b

利用 miR-27b 进行血管生成治疗

阅读:10
作者:Dorina Veliceasa, Dauren Biyashev, Gangjian Qin, Sol Misener, Alexander Roy Mackie, Raj Kishore, Olga V Volpert

Background

Multiple studies demonstrated pro-angiogenic effects of microRNA (miR)-27b. Its targets include Notch ligand Dll4, Sprouty (Spry)-2, PPARγ and Semaphorin (SEMA) 6A. miR-27 effects in the heart are context-dependent: although it is necessary for ventricular maturation, targeted overexpression in cardiomyocytes causes hypertrophy and dysfunction during development. Despite significant recent advances, therapeutic potential of miR-27b in cardiovascular disease and its effects in adult heart remain unexplored. Here, we assessed the therapeutic potential of miR-27b mimics and inhibitors in rodent models of ischemic disease and cancer.

Conclusions

Our study demonstrates the utility of manipulating miR-27b levels in the treatment of cardiovascular disease and cancer.

Methods

We have used a number of models to demonstrate the effects of miR-27b mimicry and inhibition in vivo, including subcutaneous Matrigel plug assay, mouse models of hind limb ischemia and myocardial infarction and subcutaneous Lewis Lung carcinoma.

Results

Using mouse model of myocardial infarction due to the coronary artery ligation, we showed that miR-27b mimic had overall beneficial effects, including increased vascularization, decreased fibrosis and increased ejection fraction. In mouse model of critical limb ischemia, miR-27b mimic also improved tissue re-vascularization and perfusion. In both models, miR-27b mimic clearly decreased macrophage recruitment to the site of hypoxic injury. In contrast, miR-27b increased the recruitment of bone marrow derived cells to the neovasculature, as was shown using mice reconstituted with fluorescence-tagged bone marrow. These effects were due, at least in part, to the decreased expression of Dll4, PPARγ and IL10. In contrast, blocking miR-27b significantly decreased vascularization and reduced growth of subcutaneous tumors and decreased BMDCs recruitment to the tumor vasculature. Conclusions: Our study demonstrates the utility of manipulating miR-27b levels in the treatment of cardiovascular disease and cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。