Growth Hormone Improves Adipose Tissue Browning and Muscle Wasting in Mice with Chronic Kidney Disease-Associated Cachexia

生长激素改善慢性肾病相关恶病质小鼠的脂肪组织褐变和肌肉萎缩

阅读:5
作者:Robert H Mak, Sujana Gunta, Eduardo A Oliveira, Wai W Cheung

Abstract

Cachexia associated with chronic kidney disease (CKD) has been linked to GH resistance. In CKD, GH treatment enhances muscular performance. We investigated the impact of GH on cachexia brought on by CKD. CKD was induced by 5/6 nephrectomy in c57BL/6J mice. After receiving GH (10 mg/kg/day) or saline treatment for six weeks, CKD mice were compared to sham-operated controls. GH normalized metabolic rate, increased food intake and weight growth, and improved in vivo muscular function (rotarod and grip strength) in CKD mice. GH decreased uncoupling proteins (UCP)s and increased muscle and adipose tissue ATP content in CKD mice. GH decreased lipolysis of adipose tissue by attenuating expression and protein content of adipose triglyceride lipase and protein content of phosphorylated hormone-sensitive lipase in CKD mice. GH reversed the increased expression of beige adipocyte markers (UCP-1, CD137, Tmem26, Tbx1, Prdm16, Pgc1α, and Cidea) and molecules implicated in adipose tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in CKD mice. Additionally, GH normalized the molecular markers of processes connected to muscle wasting in CKD, such as myogenesis and muscle regeneration. By using RNAseq, we previously determined the top 12 skeletal muscle genes differentially expressed between mice with CKD and control animals. These 12 genes' aberrant expression has been linked to increased muscle thermogenesis, fibrosis, and poor muscle and neuron regeneration. In this study, we demonstrated that GH restored 7 of the top 12 differentially elevated muscle genes in CKD mice. In conclusion, GH might be an effective treatment for muscular atrophy and browning of adipose tissue in CKD-related cachexia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。