A critical balance between Cyclin B synthesis and Myt1 activity controls meiosis entry in Xenopus oocytes

细胞周期蛋白B合成和Myt1活性之间的关键平衡控制着非洲爪蟾卵母细胞减数分裂的开始

阅读:5
作者:Melina Gaffré, Alain Martoriati, Naima Belhachemi, Jean-Philippe Chambon, Evelyn Houliston, Catherine Jessus, Anthi Karaiskou

Abstract

In fully grown oocytes, meiosis is arrested at first prophase until species-specific initiation signals trigger maturation. Meiotic resumption universally involves early activation of M phase-promoting factor (Cdc2 kinase-Cyclin B complex, MPF) by dephosphorylation of the inhibitory Thr14/Tyr15 sites of Cdc2. However, underlying mechanisms vary. In Xenopus oocytes, deciphering the intervening chain of events has been hampered by a sensitive amplification loop involving Cdc2-Cyclin B, the inhibitory kinase Myt1 and the activating phosphatase Cdc25. In this study we provide evidence that the critical event in meiotic resumption is a change in the balance between inhibitory Myt1 activity and Cyclin B neosynthesis. First, we show that in fully grown oocytes Myt1 is essential for maintaining prophase I arrest. Second, we demonstrate that, upon upregulation of Cyclin B synthesis in response to progesterone, rapid inactivating phosphorylation of Myt1 occurs, mediated by Cdc2 and without any significant contribution of Mos/MAPK or Plx1. We propose a model in which the appearance of active MPF complexes following increased Cyclin B synthesis causes Myt1 inhibition, upstream of the MPF/Cdc25 amplification loop.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。