Molecular determinants of afferent sensitization in a rat model of cystitis with urothelial barrier dysfunction

患有尿路上皮屏障功能障碍的膀胱炎大鼠模型中传入敏感化的分子决定因素

阅读:5
作者:Nicolas Montalbetti, James G Rooney, Anna C Rued, Marcelo D Carattino

Abstract

The internal surface of the urinary bladder is covered by the urothelium, a stratified epithelium that forms an impermeable barrier to urinary solutes. Increased urothelial permeability is thought to contribute to symptom generation in several forms of cystitis by sensitizing bladder afferents. In this report we investigate the physiological mechanisms that mediate bladder afferent hyperexcitability in a rat model of cystitis induced by overexpression in the urothelium of claudin-2 (Cldn2), a tight junction-associated protein upregulated in bladder biopsies from patients with interstitial cystitis/bladder pain syndrome. Patch-clamp studies showed that overexpression of Cldn2 in the urothelium sensitizes a population of isolectin GS-IB4-negative [IB4(-)] bladder sensory neurons with tetrodotoxin-sensitive (TTX-S) action potentials. Gene expression analysis revealed a significant increase in mRNA levels of the delayed-rectifier voltage-gated K+ channel (Kv)2.2 and the accessory subunit Kv9.1 in this population of bladder sensory neurons. Consistent with this finding, Kv2/Kv9.1 channel activity was greater in IB4(-) bladder sensory neurons from rats overexpressing Cldn2 in the urothelium than in control counterparts. Likewise, current density of TTX-S voltage-gated Na+ (Nav) channels was greater in sensitized neurons than in control counterparts. Significantly, guangxitoxin-1E (GxTX-1E), a selective blocker of Kv2 channels, blunted the repetitive firing of sensitized IB4(-) sensory neurons. In summary, our studies indicate that an increase in the activity of TTX-S Nav and Kv2/Kv9.1 channels mediates repetitive firing of sensitized bladder sensory neurons in rats with increased urothelial permeability.NEW & NOTEWORTHY Hyperexcitability of sensitized bladder sensory neurons in a rat model of interstitial cystitis/bladder pain syndrome (IC/BPS) results from increased activity of tetrodotoxin-sensitive voltage-gated Na+ and delayed-rectifier voltage-gated K+ (Kv)2/Kv9.1 channels. Of major significance, our studies indicate that Kv2/Kv9.1 channels play a major role in symptom generation in this model of IC/BPS by maintaining the sustained firing of the sensitized bladder sensory neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。