Environmentally Friendly Polyvinyl Alcohol-Alginate/Bentonite Semi-Interpenetrating Polymer Network Nanocomposite Hydrogel Beads as an Efficient Adsorbent for the Removal of Methylene Blue from Aqueous Solution

环境友好的聚乙烯醇-海藻酸盐/膨润土半互穿聚合物网络纳米复合水凝胶珠作为高效吸附剂去除水溶液中的亚甲蓝

阅读:8
作者:Mona A Aziz Aljar, Suad Rashdan, Ahmed Abd El-Fattah

Abstract

Hazardous chemicals like toxic organic dyes are very harmful to the environment and their removal is quite challenging. Therefore there is a necessity to develop techniques, which are environment friendly, cost-effective and easily available in nature for water purification and remediation. The present research work is focused on the development` and characterization of the ecofriendly semi-interpenetrating polymer network (semi-IPN) nanocomposite hydrogels composed of polyvinyl alcohol (PVA) and alginate (Alg) hydrogel beads incorporating natural bentonite (Bent) clay as a beneficial adsorbent for the removal of toxic methylene blue (MB) from aqueous solution. PVA-Alg/Bent nanocomposite hydrogel beads with different Bent content (0, 10, 20, and 30 wt%) were synthesized via external ionic gelation method. The designed porous and steady structure beads were characterized by the use of Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). The performance of the beads as MB adsorbents was investigated by treating aqueous solutions in batch mode. The experimental results indicated that the incorporation of Bent (30 wt%) in the nanocomposite formulation sustained the porous structure, preserved water uptake, and increased MB removal efficiency by 230% compared to empty beads. Designed beads possessed higher affinity to MB at high pH 8, 30 °C, and fitted well to pseudo-second-order kinetic model with a high correlation coefficient. Moreover, the designed beads had good stability and reusability as they exhibited excellent removal efficiency (90%) after six consecutive adsorption-desorption cycles. The adsorption process was found be combination of both monolayer adsorption on homogeneous surface and multilayer adsorption on heterogeneous surface. The maximum adsorption capacity of the designed beads system as calculated by Langmuir isotherm was found to be 51.34 mg/g, which is in good agreement with the reported clay-related adsorbents. The designed semi-IPN PVA-Alg/Bent nanocomposite hydrogel beads demonstrated good adsorbent properties and could be potentially used for MB removal from polluted water.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。