Biodegradation of Polylactic Acid-Based Bio Composites Reinforced with Chitosan and Essential Oils as Anti-Microbial Material for Food Packaging

壳聚糖和精油增强的聚乳酸基生物复合材料的生物降解性作为食品包装的抗菌材料

阅读:6
作者:Teuku Rihayat, Agung Efriyo Hadi, Nurhanifa Aidy, Aida Safitri, Januar Parlaungan Siregar, Tezara Cionita, Agustinus Purna Irawan, Mohammad Hazim Mohamad Hamdan, Deni Fajar Fitriyana

Abstract

This study aims to produce and investigate the potential of biodegradable Polylactic Acid (PLA)-based composites mixed with chitosan and Turmeric Essential Oil (TEO) as an anti-microbial biomaterial. PLA has good barrier properties for moisture, so it is suitable for use as a raw material for making packaging and is included in the GRAS (Generally Recognized As Safe). Chitosan is a non-toxic and antibacterial cationic polysaccharide that needs to be improved in its ability to fight microbes. TEO must be added to increase antibacterial properties due to a large number of hydroxyl (-OH) and carbonyl functional groups. The samples were prepared in three different variations: 2 g of chitosan, 0 mL TEO and 0 mL glycerol (Biofilm 1), 3 g of chitosan, 0.3 mL TEO and 0.5 mL of glycerol (Biofilm 2), and 4 g of chitosan, 0.3 of TEO and 0.5 mL of glycerol (Biofilm 3). The final product was characterized by its functional group through Fourier transform infrared (FTIR); the functional groups contained by the addition of TEO are C-H, C=O, O-H, and N-H with the extraction method, and as indicated by the emergence of a wide band at 3503 cm-1, turmeric essential oil interacts with the polymer matrix by creating intermolecular hydrogen bonds between their terminal hydroxyl group and the carbonyl groups of the ester moieties of both PLA and Chitosan. Thermogravimetric analysis (TGA) of PLA as biofilms, the maximum temperature of a biofilm was observed at 315.74 °C in the variation of 4 g chitosan, 0.3 mL TEO, and 0.5 mL glycerol (Biofilm 3). Morphological conditions analyzed under scanning electron microscopy (SEM) showed that the addition of TEO inside the chitosan interlayer bound chitosan molecules to produce solid particles. Chitosan and TEO showed increased anti-bacterial activity in the anti-microbial test. Furthermore, after 12 days of exposure to open areas, the biofilms generated were able to resist S. aureus and E. coli bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。