Rotating Hybrid Nanofluid Flow with Chemical Reaction and Thermal Radiation between Parallel Plates

平行板间旋转混合纳米流体流动与化学反应和热辐射

阅读:4
作者:Mubashar Arshad, Ali Hassan, Qusain Haider, Fahad M Alharbi, Najah Alsubaie, Abdullah Alhushaybari, Diana-Petronela Burduhos-Nergis, Ahmed M Galal

Abstract

This research investigates the two different hybrid nanofluid flows between two parallel plates placed at two different heights, y0 and yh, respectively. Water-based hybrid nanofluids are obtained by using Al2O3, TiO2 and Cu as nanoparticles, respectively. The upper-level plate is fixed, while the lower-level plate is stretchable. The fluid rotates along the y-axis. The governing equations of momentum, energy and concentration are transformed into partial differential equations by using similarity transformations. These transformed equations are grasped numerically at MATLAB by using the boundary value problem technique. The influence of different parameters are presented through graphs. The numerical outcomes for rotation, Nusselt, Prandtl, and Schmidt numbers are obtained in the form of tables. The heat transfer rate increases by augmentation in the thermophoresis parameter, while it decays by increasing the Reynolds number. Oxide nanoparticles hybrid nanofluid proved more efficient as compared to mixed nanoparticles hybrid nanofluid. This research suggests using oxide nanoparticles for good heat transfer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。