Sensitization of ZnO Photoconductivity in the Visible Range by Colloidal Cesium Lead Halide Nanocrystals

胶体铯铅卤化物纳米晶体对可见光范围内 ZnO 光电导性的敏化

阅读:5
作者:Artem Chizhov, Marina Rumyantseva, Nikolay Khmelevsky, Andrey Grunin

Abstract

In this work, colloidal perovskite nanocrystals (PNCs) are used to sensitize the photoconductivity of nanocrystalline ZnO films in the visible range. Nanocrystalline ZnO with a crystallite size of 12-16 nm was synthesized by precipitation of a zinc basic carbonate from an aqueous solution, followed by annealing at 300 °C. Perovskite oleic acid- and oleylamine-capped CsPbBr3, CsPb(Cl/Br)3 and CsPb(Br/I)3 PNCs with a size of 6-13 nm were synthesized by a hot injection method at 170 °C in 1-octadecene. Photoconductive nanocomposites were prepared by applying a hexane sol of PNCs to a thick (100 μm) polycrystalline conductive ZnO layer. The spectral dependence of the photoconductivity, the dependence of the photoconductivity on irradiation, and the relaxation of the photoconductivity of the obtained nanocomposites have been studied. Sensitization of ZnO by CsPbBr3 and CsPb(Cl/Br)3 PNCs leads to enhanced photoconductivity in the visible range, the maximum of which is observed at 460 and 500 nm, respectively; close to the absorption maximum of PNCs. Nanocomposites ZnO/CsPb(Br/I)3 turned out to be practically not photosensitive when irradiated with light in the visible range. The data obtained are discussed in terms of the position of the energy levels of ZnO and PNCs and the probable PNCs photodegradation. The structure, morphology, composition, and optical properties of the synthesized nanocrystals have also been studied by XRD, TEM, and XPS. The results can be applied to the creation of artificial neuromorphic systems in the visible optical range.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。