A flexible, thin-film microchannel electrode array device for selective subdiaphragmatic vagus nerve recording

一种用于选择性膈下迷走神经记录的柔性薄膜微通道电极阵列装置

阅读:4
作者:Jongcheon Lim, Peter A Zoss, Terry L Powley, Hyowon Lee, Matthew P Ward

Abstract

The vagus nerve (VN) plays an important role in regulating physiological conditions in the gastrointestinal (GI) tract by communicating via the parasympathetic pathway to the enteric nervous system (ENS). However, the lack of knowledge in the neurophysiology of the VN and GI tract limits the development of advanced treatments for autonomic dysfunctions related to the VN. To better understand the complicated underlying mechanisms of the VN-GI tract neurophysiology, it is necessary to use an advanced device enabled by microfabrication technologies. Among several candidates including intraneural probe array and extraneural cuff electrodes, microchannel electrode array devices can be used to interface with smaller numbers of nerve fibers by securing them in the separate channel structures. Previous microchannel electrode array devices to interface teased nerve structures are relatively bulky with thickness around 200 µm. The thick design can potentially harm the delicate tissue structures, including the nerve itself. In this paper, we present a flexible thin film based microchannel electrode array device (thickness: 11.5 µm) that can interface with one of the subdiaphragmatic nerve branches of the VN in a rat. We demonstrated recording evoked compound action potentials (ECAP) from a transected nerve ending that has multiple nerve fibers. Moreover, our analysis confirmed that the signals are from C-fibers that are critical in regulating autonomic neurophysiology in the GI tract.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。