Global phospholipidomics analysis reveals selective pulmonary peroxidation profiles upon inhalation of single-walled carbon nanotubes

整体磷脂组学分析揭示吸入单壁碳纳米管后的选择性肺过氧化特征

阅读:4
作者:Yulia Y Tyurina, Elena R Kisin, Ashley Murray, Vladimir A Tyurin, Valentina I Kapralova, Louis J Sparvero, Andrew A Amoscato, Alejandro K Samhan-Arias, Linda Swedin, Riitta Lahesmaa, Bengt Fadeel, Anna A Shvedova, Valerian E Kagan

Abstract

It is commonly believed that nanomaterials cause nonspecific oxidative damage. Our mass spectrometry-based oxidative lipidomics analysis of all major phospholipid classes revealed highly selective patterns of pulmonary peroxidation after inhalation exposure of mice to single-walled carbon nanotubes. No oxidized molecular species were found in the two most abundant phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Peroxidation products were identified in three relatively minor classes of anionic phospholipids, cardiolipin, phosphatidylserine, and phosphatidylinositol, whereby oxygenation of polyunsaturated fatty acid residues also showed unusual substrate specificity. This nonrandom peroxidation coincided with the accumulation of apoptotic cells in the lung. A similar selective phospholipid peroxidation profile was detected upon incubation of a mixture of total lung lipids with H(2)O(2)/cytochrome c known to catalyze cardiolipin and phosphatidylserine peroxidation in apoptotic cells. The characterized specific phospholipid peroxidation signaling pathways indicate new approaches to the development of mitochondria-targeted regulators of cardiolipin peroxidation to protect against deleterious effects of pro-apoptotic effects of single-walled carbon nanotubes in the lung.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。