Microencapsulation of Piscirickettsia salmonis Antigens for Fish Oral Immunization: Optimization and Stability Studies

用于鱼类口服免疫的鲑鱼立克次体抗原微胶囊化:优化和稳定性研究

阅读:9
作者:Daniela Sotomayor-Gerding, José Miguel Troncoso, Katherine Díaz-Riquelme, Karin Mariana Torres-Obreque, Juan Cumilaf, Alejandro J Yañez, Mónica Rubilar

Abstract

The development of fish oral vaccines is of great interest to the aquaculture industry due to the possibility of rapid vaccination of a large number of animals at reduced cost. In a previous study, we evaluated the effect of alginate-encapsulated Piscirickettsia salmonis antigens (AEPSA) incorporated in feed, effectively enhancing the immune response in Atlantic salmon (Salmo salar). In this study, we seek to characterize AEPSA produced by ionic gelation using an aerodynamically assisted jetting (AAJ) system, to optimize microencapsulation efficiency (EE%), to assess microparticle stability against environmental (pH, salinity and temperature) and gastrointestinal conditions, and to evaluate microparticle incorporation in fish feed pellets through micro-CT-scanning. The AAJ system was effective in obtaining small microparticles (d < 20 μm) with a high EE% (97.92%). Environmental conditions (pH, salinity and temperature) generated instability in the microparticles, triggering protein release. 62.42% of the protein content was delivered at the intestinal level after in vitro digestion. Finally, micro-CT-scanning images confirmed microparticle incorporation in fish feed pellets. In conclusion, the AAJ system is effective at encapsulating P. salmonis antigens in alginate with a high EE% and a size small enough to be incorporated in fish feed and produce an oral vaccine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。