Antiproliferation potential of withaferin A on human osteosarcoma cells via the inhibition of G2/M checkpoint proteins

醉茄素 A 通过抑制 G2/M 检查点蛋白对人类骨肉瘤细胞产生抗增殖潜力

阅读:7
作者:Ting-Zhuo Lv, Guang-Shun Wang

Abstract

Withaferin A (WA) is a well-known steroidal lactone of the medicinally important plant, Withania somnifera. This secondary metabolite has been noted for its anticancer effects against a number of human cancer cell lines. However, there are a limited number of studies investigating the growth inhibitory potential of WA against human osteosarcoma cells and the underlying molecular mechanisms. Thus, in the present study, the antiproliferative activities of WA, along with the underlying mechanisms of action, were investigated using flow cytometry for cell cycle distribution and western blot analysis for the assessment of various checkpoint proteins. In addition, the antiproliferative activity was evaluated using a sulforhodamine B assay, where MG-63 and U2OS human osteosarcoma cell lines were treated with different concentrations of WA. Furthermore, the mRNA expression levels of the checkpoint proteins in the WA-treated MG-63 and U2OS cells were examined. The results obtained corresponded with the western blot analysis results. Furthermore, WA was shown to significantly inhibit the proliferation of the two types of treated cell lines (MG-63 and U2OS). Flow cytometric analysis revealed that WA induced cell cycle arrest at the G2/M phase, which was associated with the inhibition of cyclin B1, cyclin A, Cdk2 and p-Cdc2 (Tyr15) expression and an increase in the levels of p-Chk1 (Ser345) and p-Chk2 (Thr68). In conclusion, the present study found that the antiproliferative potential of WA was associated with the induction of cell cycle arrest at the G2/M phase, which was a result of the attenuation of the expression levels of G2/M checkpoint proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。