β-Catenin Directs Long-Chain Fatty Acid Catabolism in the Osteoblasts of Male Mice

β-Catenin 指导雄性小鼠成骨细胞中的长链脂肪酸分解代谢

阅读:4
作者:Julie L Frey, Soohyun P Kim, Zhu Li, Michael J Wolfgang, Ryan C Riddle

Abstract

Wnt-initiated signaling through a frizzled receptor and the low-density lipoprotein-related receptor-5 coreceptor instructs key anabolic events during skeletal development, homeostasis, and repair. Recent studies indicate that Wnt signaling also regulates the intermediary metabolism of osteoblastic cells, inducing glucose consumption in osteoprogenitors and fatty acid utilization in mature osteoblasts. In this study, we examined the role of the canonical Wnt-signaling target, β-catenin, in the control of osteoblast metabolism. In vitro, Wnt ligands and agonists that stimulated β-catenin activation in osteoblasts enhanced fatty acid catabolism, whereas genetic ablation of β-catenin dramatically reduced oleate oxidation concomitant with reduced osteoblast maturation and increased glycolytic metabolism. Temporal ablation of β-catenin expression in osteoblasts in vivo produced the expected low-bone-mass phenotype and also led to an increase in white adipose tissue mass, dyslipidemia, and impaired insulin sensitivity. Because the expression levels of enzymatic mediators of fatty acid β-oxidation are reduced in the skeleton of β-catenin mutants, these results further confirm the role of the osteoblast in lipid metabolism and indicate that the influence of Wnt signaling on fatty acid utilization proceeds via its canonical signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。