Globular adiponectin protects hepatocytes from tunicamycin-induced cell death via modulation of the inflammasome and heme oxygenase-1 induction

球状脂联素通过调节炎症小体和血红素加氧酶-1诱导保护肝细胞免受衣霉素诱导的细胞死亡

阅读:7
作者:Amrita Khakurel, Pil-Hoon Park

Abstract

Endoplasmic reticulum (ER) stress, which is defined as the accumulation of unfolded or misfolded proteins in the ER, triggers cellular dysfunction and eventually leads to cell death. In particular, excessive and prolonged ER stress is closely related with hepatic injury. Adiponectin, a hormone predominantly produced by adipose tissue, is known to possess potent hepatoprotective properties and exhibits a cytoprotective effect in response to chronic ER stress. However, the underlying mechanisms are not clearly understood. In the present study, we examined the protective effect of globular adiponectin (gAcrp) on tunicamycin-induced cell death and further investigated its potential underlying mechanisms in rat hepatocytes. Herein, we found that treatment with gAcrp inhibited tunicamycin-induced cell death, decreased lactate dehydrogenase release (marker of pyroptotic cell death), and suppressed caspase activation; clearly indicating that gAcrp protects liver cells from ER stress. Interestingly, gAcrp prevented the tunicamycin-induced activation of the inflammasome, a key platform involved in the production of inflammatory cytokines that induces pyroptosis, determined by suppression of interleukin-1β (IL-1β) maturation, apoptosis-associated speck-like protein containing a carboxy-terminal CARD (ASC) speck formation, and caspase-1 activation. Moreover, we showed that suppression of the inflammasome activation by gAcrp was mediated via modulation of reactive oxygen species (ROS) production, particularly inhibition of NADPH oxidase. In addition, inhibition of heme oxygenase-1 (HO-1) signaling by pretreatment with SnPP, a pharmacological inhibitor of HO-1, or transfection with an siRNA targeting HO-1, abrogated the protective effects of gAcrp against tunicamycin-induced cell death and abolished the suppressive effect on the inflammasome activation, demonstrating that HO-1 signaling plays a crucial role in the protective effect of gAcrp against tunicamycin-induced damage in liver cells. Taken together, these results indicate that gAcrp protects liver cells from ER stress by modulating inflammasomes activation, at least in part, via HO-1 signaling-dependent mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。