Controlling Particle Morphology and Pore Size in the Synthesis of Ordered Mesoporous Materials

有序介孔材料合成中颗粒形貌和孔径的控制

阅读:4
作者:Yaregal Awoke, Yonas Chebude, Isabel Díaz

Abstract

Ordered mesoporous materials have attracted considerable attention due to their potential applications in catalysis, adsorption, and separation technologies, as well as biomedical applications. In the present manuscript, we aim at a rational design to obtain the desired surface functionality (Ti and/or hydrophobic groups) while obtaining short channels (short diffusion paths) and large pore size (>10 nm). Santa Barbara Amorphous material SBA-15 and periodic mesoporous organosilica PMO materials are synthesized using Pluronic PE 10400 (P104) surfactant under mild acidic conditions to obtain hexagonal platelet-like particles with very short mesochannels (300-450 nm). The use of expanders, such as 1, 3, 5-trimethylbenzene (TMB) and 1, 3, 5-triisopropylbenzene (TIPB) were tested in order to increase the pore size. TMB yielded in the formation of vesicles in all the syntheses attempted, whereas P104 combined with TIPB resulted both in expanded (E) E-SBA-15 and E-PMO with 12.3 nm pore size short channel particles in both cases. Furthermore, the synthesis method was expanded to the incorporation of small amount of Ti via co-condensation method using titanocene as titanium source. As a result, Ti-E-SBA-15 was obtained with 15.5 nm pore size and isolated Ti-sites maintaining platelet hexagonal morphology. Ti-PMO was obtained with 7.8 nm and short channels, although the pore size under the tried synthesis conditions could not be expanded further without losing the structural ordering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。