Ceramide Nanoliposomes as a MLKL-Dependent, Necroptosis-Inducing, Chemotherapeutic Reagent in Ovarian Cancer

神经酰胺纳米脂质体作为卵巢癌中 MLKL 依赖性、坏死性凋亡诱导性化疗剂

阅读:5
作者:Xuewei Zhang, Kazuyuki Kitatani, Masafumi Toyoshima, Masumi Ishibashi, Toshinori Usui, Junko Minato, Mahy Egiz, Shogo Shigeta, Todd Fox, Tye Deering, Mark Kester, Nobuo Yaegashi

Abstract

Ceramides are bioactive lipids that mediate cell death in cancer cells, and ceramide-based therapy is now being tested in dose-escalating phase I clinical trials as a cancer treatment. Multiple nanoscale delivery systems for ceramide have been proposed to overcome the inherent toxicities, poor pharmacokinetics, and difficult biophysics associated with ceramide. Using the ceramide nanoliposomes (CNL), we now investigate the therapeutic efficacy and signaling mechanisms of this nanoscale delivery platform in refractory ovarian cancer. Treatment of ovarian cancer cells with CNL decreased the number of living cells through necroptosis but not apoptosis. Mechanistically, dying SKOV3 ovarian cancer cells exhibit activation of pseudokinase mixed lineage kinase domain-like (MLKL) as evidenced by oligomerization and relocalization to the blebbing membranes, showing necroptotic characteristics. Knockdown of MLKL, but not its upstream protein kinases such as receptor-interacting protein kinases, with siRNA significantly abolished CNL-induced cell death. Monomeric MLKL protein expression inversely correlated with the IC50 values of CNL in distinct ovarian cancer cell lines, suggesting MLKL as a possible determinant for CNL-induced cell death. Finally, systemic CNL administration suppressed metastatic growth in an ovarian cancer cell xenograft model. Taken together, these results suggest that MLKL is a novel pronecroptotic target for ceramide in ovarian cancer models. Mol Cancer Ther; 17(1); 50-59. ©2017 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。