Loss of NB-3 aggravates cerebral ischemia by impairing neuron survival and neurite growth

NB-3 的缺失会损害神经元的存活和神经突的生长,从而加重脑缺血

阅读:6
作者:Xin Huang, Jia Sun, Tong Zhao, Kui-Wu Wu, Kazutada Watanabe, Zhi-Cheng Xiao, Ling-Ling Zhu, Ming Fan

Background and purpose

NB-3 is a member of the F3/contactin family of neural recognition molecules, which are crucial for cell morphogenesis and motility. NB-3 is expressed in neurons and plays an important role in axonal extension and neuronal survival. However, the role of NB-3 in cerebral ischemic injury remains unknown.

Conclusions

These data demonstrate that NB-3 deficiency may aggravate brain damage after middle cerebral artery occlusion by impairing neuronal survival and neurite growth.

Methods

Adult male wild-type and NB-3 knockout mice were subjected to ischemic injury by unilateral middle cerebral carotid artery occlusion for 3 hours, 6 hours, and 12 hours. Ischemic infarction volumes were then determined by 2, 3, 5-triphenyltetrazolium chloride staining. Neurological dysfunction analysis was also performed. Primary culture of neuronal cells from wild-type and knockout animals was also used for analysis of neuronal survival and neurite outgrowth.

Purpose

NB-3 is a member of the F3/contactin family of neural recognition molecules, which are crucial for cell morphogenesis and motility. NB-3 is expressed in neurons and plays an important role in axonal extension and neuronal survival. However, the role of NB-3 in cerebral ischemic injury remains unknown.

Results

NB-3 expression in the ischemic hemisphere was decreased after transient middle cerebral artery occlusion (MCAO). NB-3-knockout mice developed a 2.6-fold larger infarct volume and exhibited increased neurological deficit scores after transient middle cerebral artery occlusion compared with control mice. Substrate with NB-3 promoted neuronal survival and neurite outgrowth in vitro, whereas neurite outgrowth and neuronal survival were significantly reduced in NB-3-deficient neurons. In addition, NB-3 deficiency renders neurons more susceptible to oxygen-glucose deprivation-induced damage and NB-3 as substrate could partially through homophilic mechanisms. Conclusions: These data demonstrate that NB-3 deficiency may aggravate brain damage after middle cerebral artery occlusion by impairing neuronal survival and neurite growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。