Nanopore Whole Transcriptome Analysis and Pathogen Surveillance by a Novel Solid-Phase Catalysis Approach

通过新型固相催化方法进行纳米孔全转录组分析和病原体监测

阅读:4
作者:Yi Fang, Amogh Changavi, Manyun Yang, Luo Sun, Aihua Zhang, Daniel Sun, Zhiyi Sun, Boce Zhang, Ming-Qun Xu

Abstract

The requirement of a large input amount (500 ng) for Nanopore direct RNA-seq presents a major challenge for low input transcriptomic analysis and early pathogen surveillance. The high RNA input requirement is attributed to significant sample loss associated with library preparation using solid-phase reversible immobilization (SPRI) beads. A novel solid-phase catalysis strategy for RNA library preparation to circumvent the need for SPRI bead purification to remove enzymes is reported here. This new approach leverages concurrent processing of non-polyadenylated transcripts with immobilized poly(A) polymerase and T4 DNA ligase, followed by directly loading the prepared library onto a flow cell. Whole transcriptome sequencing, using a human pathogen Listeria monocytogenes as a model, demonstrates this new method displays little sample loss, takes much less time, and generates higher sequencing throughput correlated with reduced nanopore fouling compared to the current library preparation for 500 ng input. Consequently, this approach enables Nanopore low-input direct RNA-seq, improving pathogen detection and transcript identification in a microbial community standard with spike-in transcript controls. Besides, as evident in the bioinformatic analysis, the new method provides accurate RNA consensus with high fidelity and identifies higher numbers of expressed genes for both high and low input RNA amounts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。