Conclusions
A1AT exerts an anti-inflammatory effect in cigarette smoke-exposed and HRV-infected human airway epithelial cells, which may be related to its inhibitory effect on caspase-1 activity.
Methods
Brushed bronchial epithelial cells from COPD and normal subjects were cultured at air-liquid interface and treated with A1AT or bovine serum albumin (BSA, control) two hours prior to whole cigarette smoke (WCS) or air exposure, followed by HRV-16 infection. After 24 hours of viral infection, cell supernatants were collected for measuring IL-8, and cells were examined for caspase-1. The in vivo anti-inflammatory function of A1AT was determined by infecting mice intranasally with HRV-1B followed by aerosolized A1AT or BSA.
Objective
Excessive airway inflammation is seen in chronic obstructive pulmonary disease (COPD) patients experiencing acute exacerbations, which are often associated with human rhinovirus (HRV) infection. Alpha-1 antitrypsin (A1AT) has anti-inflammatory function in endothelial cells and monocytes, but its anti-inflammatory effect has not been investigated in COPD airway epithelial cells. We determined A1AT's anti-inflammatory function in COPD airway epithelial cells and the underlying mechanisms such as the role of caspase-1.
Results
A1AT significantly reduced WCS and HRV-16-induced IL-8 production in normal and COPD airway epithelial cells. COPD cells are less sensitive to A1AT's anti-inflammatory effect than normal cells. A1AT exerted the anti-inflammatory function in part via reducing caspase-1 in normal cells, but not in COPD cells. In mice, A1AT significantly reduced HRV-1B induced lung neutrophilic inflammation. Conclusions: A1AT exerts an anti-inflammatory effect in cigarette smoke-exposed and HRV-infected human airway epithelial cells, which may be related to its inhibitory effect on caspase-1 activity.
