Activation of mitogen-activated protein kinases by 5,6-dimethylxanthenone-4-acetic acid (DMXAA) plays an important role in macrophage stimulation

5,6-二甲基黄酮-4-乙酸 (DMXAA) 激活丝裂原活化蛋白激酶在巨噬细胞刺激中起重要作用

阅读:7
作者:Jing Sun, Liang-Chuan S Wang, Zvi G Fridlender, Veena Kapoor, Guanjun Cheng, Lai-Ming Ching, Steven M Albelda

Abstract

The small molecule anti-tumor agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA, now called Vadimezan) is a potent macrophage and dendritic cell activating agent that, in the murine system, results in the release of large amounts of cytokines and chemokines. The mechanisms by which this release is mediated have not been fully elucidated. The mitogen-activated protein kinase (MAPK) pathways play an important role in the regulation of proinflammatory cytokines, such as TNF-α, IL-1β, as well as the responses to extracellular stimuli, such as lipopolysaccharide (LPS). The results of this study demonstrate that DMXAA activates three members of mitogen-activated protein kinase (MAPK) superfamily, namely p38 MAPK, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), and c-Jun N-terminal kinases (JNKs) via a RIP2-independent mechanism in murine macrophages. By using selective inhibitors of MAPKs, this study confirms that both activated p38/MK2 pathways and ERK1/2 MAPK play a significant role in regulation of both TNF-α and IL-6 protein production induced by DMXAA at the post-transcriptional level. Our findings also show that interferon-γ priming can dramatically augment TNF-α protein secretion induced by DMXAA through enhancing activation of multiple MAPK pathways at the post-transcriptional level. This study expands current knowledge on mechanisms of how DMXAA acts as a potent anti-tumor agent in murine system and also provides useful information for further study on the mechanism of action of this potential anti-tumor compound in human macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。