Design and improvement of artificial redox modules by molecular fusion of flavodoxin and flavodoxin reductase from Escherichia coli

通过大肠杆菌黄素蛋白和黄素蛋白还原酶的分子融合设计和改进人工氧化还原模块

阅读:6
作者:Patrick J Bakkes, Stefan Biemann, Ansgar Bokel, Marc Eickholt, Marco Girhard, Vlada B Urlacher

Abstract

A variety of fusion proteins between the versatile redox partners flavodoxin (FldA) and flavodoxin reductase (Fpr) from Escherichia coli was constructed with the aim to improve the electron transfer properties. The order in which FldA and Fpr were fused and the linker region between them was varied in a systematic manner. A simple molecular tool, designated "DuaLinX", was developed that facilitated the parallel introduction of flexible glycine-rich and rigid proline-rich linkers between the fusion partners in a single cloning event. The fusion constructs were tested for their ability to transfer electrons to cytochrome c and cytochrome P450 109B1 from Bacillus subtilis. With CYP109B1, the performance of the constructs showed, independent of the domain order, a strong dependency on linker length, whereas with cytochrome c this phenomenon was less pronounced. Constructs carrying linkers of ≥15 residues effectively supported the CYP109B1-catalysed hydroxylation of myristic acid. Constructs carrying proline-rich linkers generally outperformed their glycine-rich counterparts. The best construct, FldA-Fpr carrying linker ([E/L]PPPP)4, supported CYP109B1 activity equally well as equivalent amounts of the non-fused redox partners, while cytochrome c reductase activity was ~2.7-fold improved. Thus, to functionally connect redox partners, rigid proline-rich linkers may be attractive alternatives to the commonly used flexible glycine-rich linkers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。